符合下述情况的SCI的联邦学习相关论文有哪些:1. 非 FegAvg 2. 一维时间信号 3. 非监督学习
在寻找符合以下条件的联邦学习(Federated Learning, FL)相关论文时:
可以参考以下几篇论文,这些论文在某种程度上满足上述条件:
"Federated Learning with Non-IID Data" by Tian Li, Anit Kumar Sahu, Ameet Talwalkar, Virginia Smith
"Federated Learning for Time Series Forecasting under Heterogeneous Conditions" by Yao Chen, Lixin Fan, Qiang Yang
"Federated Unsupervised Representation Learning" by Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Ananda Theertha Suresh
"Robust and Communication-Efficient Federated Learning from Non-IID Data" by Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G.L. D'Oliveira, et al.
"Federated Learning with Matched Averaging" by Xinyi Xu, Mi Zhang
这些论文提供了不同的联邦学习方法和应用场景,虽然并非所有都完全符合所有条件,但它们提供了有价值的参考和方法,可以根据具体需求进行调整和应用。建议进一步阅读这些论文,了解其具体方法和应用场景,以确定最适合的解决方案。